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A current challenge for self-assembly is the synthesis of shape- oTg OTg OTg oTg OTg
persistent nanostructures with a high degree of structural control. TGO < S Z <9 S Z O S < S 2
These artificial macromolecules could ultimately approach the
sophistication of biomoleculés,allowing atomic-level spatial
control over multi-nanometer length scales in two and three  T90
dimensions, and the construction of molecular objects of size OTg OTg
commensurate with top-down nanofabrication. Much like the current
use of DNA as a structural element for nanotechnofgy,
multitopic oligomer-based approach allows, in principle, the forma-
tion of complex nonsymmetrical structures by incorporating instruc- scheme 1
tions for self-assembly into sequence. However, in contrast to small- [ oTg 1 org
molecule building blocks, the use of linear oligomers as components
for nanostructure construction is relatively undeveloped, with a few TgO
exceptions~8 Here we show that discrete oligomers are viable
building blocks for fully covalent shape-persistent molecular grids. - n-2
We have found that, using dynamic covalent chemistry (DTC),
complimentarym-phenylene ethynylenenPE) oligomers will self-
assemble intorj-rung molecular ladderslf, n = 3—6). In the
largest caself, Figure 1), the core region is approximately 62
1.6 nm. In all cases, the desired ladder structure is the only product
observed by MALDI mass spectrometry, although gel permeation
chromatography (GPC) indicates an increasing fraction of high
molecular weight byproducts with increasimg These ladders 1. Sc(OTf)3 / CHCl3
represent the first step toward larger grids that will be developed \T/_\Q/ 2. NaBH(OAc)s
as high precision nanofiltration membrari@sy as “smart-matrix”
grids to position units for solar energy harvestig. ~ or 1 or

Structures13—16 are similar to other reported finite, solution- 9 g
phase molecular ladders based on zinc porphyaimd aromatic TgO X A
amidée oligomers. However, to our knowledge, these are the first
examples of molecular ladders directly assembled using EFCC. l
We chose imine formation and exchange reactions for rung
construction, as they are well established in the synthesis of organic IN 2 NN T
nanostructuré8 and in particular have been used by us to prepare oTg | OTg
mPE macrocycled! These reactions are fast, and the products can ) n-2
be trapped by irreversible reduction. Furthermore, like a hydrogen 17(n=36)
bond, the imine bond igdirectional which prevents homodimer-
ization and could be of future use as a means to larger and mor

6.2 nm
Figure 1. [6]-Rung ladder1® (OTg= O(CH,CH;O):CHs).
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In addition, the shorter ladder&® and 14 were isolated by
epreparatory GPC (57 and 37% yield, respectively) and characterized

complicated structures. by IH NMR.19

Oligomers2" and3" were prepared using a previously reported "\ D) spectra of the crude products are shown in Figure 2.
solid-phase method developed in our laboratdiyadder formation Remarkably, in each case, the spectra are dominated by peaks
was carried out at room temperature by stgran3 mMchloroform assigned td3—16 (both M* and M+ Na* ions are observed). The

solution of aldehyde-substituted! and a slight (5%) excess of  desired ladder structures are the only reasonable products corre-
amino-substitute@” with scandium(lll) triflaté® (Scheme 1). At sponding to the observed molecular weights (the instrument is
no point during the reaction did we observe a precipitate or gccurate to 0.050.1%). We do not observe any signals corre-
cloudiness in the reaction mixtures, suggesting that these Iargesponding to out-of-registe?™3" adducts (which would occur at
ladder structures have good solubility, and that there is no formation +18 au for each unreacted ME&HO pair), or higher molecular

of insoluble polymer network byproducts. After 5hthe reaction weight polymers (i.e.,2"y(3"y, with x + y > 2). The small features
mixtures were quenched with sodium triacetoxyborohydfide at twice the desired molecular weight are assigned to gas phase
reduce the imines and facilitate analysis. After workup, the reaction aggregate dimers df (i.e., [1"*Na*]), which have been observed
products were analyzed by MALDI mass spectrometry and GPC. for other shape-persistent macrocycles.
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46136 be prone to misassembly, the products of which are kinetically

3863.1 n=3 trapped by multiple imine bonds. The GPC trace was essentially
3109.5 n=4 unchanged when the formation ¥ was carried out at elevated
23%9.3 temperature (75C, in a sealed tubé.This suggests that the system

may not be kinetically trapped at large Further studies to probe
the mechanism are underway, as is the development of strategies
to overcome these limitations.

To summarize, we have demonstrated the self-assembly of
[n]-rung molecular ladder$" using DCC to cross-link discretePE
oligomers. Despite their large aromatic surface, these structures

(SESSTELET 1Y show good solubility under the reaction conditions. MALDI spectra
- I A of the unpurified products are remarkably clean and provide direct
R e e e LRI evidence for the formation of the desired ladder structues

1000 2000 3000 4000 5000 6000 7000 8000 However, GPC traces suggest that, as the oligomer length increases,
miz the yield decreases as a greater proportion of higher molecular
Figure 2. MALDI spectra of13—16 (TCNQ matrix). Calculated molecular ~ Weight material is observed. Nevertheless, these structures dem-

weights: [I® + Naf] 2358.7; [I* + Na'] 3110.6; [I> + Na'] 3862.4; [1° onstrate the utility of discrete oligomers as components for two-

+ Na'] 4614.3. dimensional nanostructure assembly.
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